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Abstract. We develop new algorithms for global optimization by combining well known
branch and bound methods with multilevel subdivision techniques for the computation of
invariant sets of dynamical systems. The basic idea is to view iteration schemes for local
optimization problems – e.g. Newton’s method or conjugate gradient methods – as dynami-
cal systems and to compute set coverings of their fixed points. The combination with bound-
ing techniques allow for the computation of coverings of the global optima only. We show
convergence of the new algorithms and present a particular implementation.
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1. Introduction

The solution of global optimization problems plays an important role in
many applications in science and engineering. Classical iteration procedures
(e.g. Newton’s method or conjugate gradient methods) are often not appro-
priate for finding a global minimum of a given objective function, since
they usually get stuck in local minima. Alternative approaches like ran-
dom search methods (see e.g. Dixon and Szegö, 1978; Zhigljavsky, 1991)
or genetic algorithms (Goldberg, 1989; Davis, 1996) have the disadvantage
that there always is some uncertainty whether or not the global optimum
has actually been found at the end of the searching procedure. On the
other hand rigorous methods based on interval analysis as proposed for
instance in Ratschek and Rokne (1988), Hansen (1992) or Kearfott (1996)
are usually only applicable to low-dimensional problems.

In this article we propose a new method for the computation of the
global minimum of a given objective function. This method is based on
a set oriented approach which is similar in spirit as the one in Dellnitz
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and Hohmann (1997) where set oriented numerical methods have been
developed for the analysis of discrete dynamical systems (see also Dellnitz
and Hohmann, 1996; Dellnitz and Junge, 2002). Roughly speaking these
methods work as follows: starting with a big compact region in state space
one constructs successively refined box coverings of the invariant sets of
the dynamical system under consideration. Thus, the respective numerical
multilevel scheme is based on two basic ingredients: subdivision and selec-
tion. Similar approaches can be found e.g. in Hsu (1987) or Osipenko and
Komarchev (1995).

Already in Dellnitz et al. (2002) subdivision techniques were successfully
introduced for the computation of all the zeros of a nonlinear function in
a compact domain. The underlying idea is to view iteration schemes (such
as Newton’s method) as dynamical systems. Then the subdivision and selec-
tion procedures are adapted to this context such that all the respective fixed
points can be detected. In this paper we go even one step further and adapt
the algorithms to the context of global optimization. That is, by an addi-
tional combination with branch and bound strategies we propose particu-
lar subdivision schemes which allow to approximate the global minima of
a given function in a reliable way.

A more detailed outline of the article is as follows. In Section 2 we pres-
ent a modification of the subdivision procedure for the computation of set
coverings of the fixed points of a given dynamical system (Proposition 1
and Algorithm 2). This allows us to compute all the local extremal points
of arbitrary nonlinear functions within compact domains. Since we want to
find the global optima of the given objective function we propose an algo-
rithm which combines the subdivision procedure of Section 2 with branch
and bound techniques as described in Horst and Tuy (1996) and discuss its
convergence properties (Section 3). In Section 4 we present several numeri-
cal examples which illustrate the efficiency and reliability of our approach.

2. The Computation of Fixed Points of Discrete Dynamical Systems

We consider discrete dynamical systems of the type

xj+1 =f (xj ), j =0,1,2, . . . ,

where f : R
n →R

n is a continuous mapping and xj ∈R
n, j =0,1,2, . . . , are

the state variables.
Our purpose is to develop a set oriented numerical method for the

approximation of all the fixed points of f within some given compact sub-
set Q⊂R

n, i.e. the set

FPf (Q)={x ∈Q :f (x)=x}.
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Previously a subdivision technique has been developed in Dellnitz and
Hohmann (1997) for the approximation of general invariant sets of dynam-
ical systems, that is sets A⊂R

n with the property that f (A)=A. Here we
adapt this technique to the present context in order to compute successively
finer coverings of FPf (Q).

2.1. computation of invariant sets

We begin by briefly recalling the subdivision procedure of Dellnitz and
Hohmann (1997). Starting with a (big) initial compact subset Q ⊂ R

n

this algorithm produces successively refined coverings of the invariant sets
under consideration for a given dynamical system f . More concretely, this
procedure works as follows:

ALGORITHM 1. Computation of invariant sets.

Step 0. Initialization. Let B0 be an initial collection of finitely many sub-
sets of the compact set Q such that ∪B∈B0B =Q.

Step k. Iteration (k = 1,2, . . . ). At the beginning of Step k a collection
Bk−1 of finitely many subsets is available.

k.1. Choose θk with 0<θmin � θk � θmax <1.
k.2. Subdivision: Construct a new (refined) system ̂Bk of subsets such

that

⋃

B∈ ̂Bk

B =
⋃

B∈Bk−1

B

and

diam(̂Bk)= θk diam(Bk−1).

k.3. Set Bk =∅ to be an empty collection.
k.4. Selection:

For every B ∈ ̂Bk do:
Add B to the collection Bk if there exists a ̂B ∈ ̂Bk such that
f −1(B)∩ ̂B �=∅.

end for
k.5. Continue with Step k +1.

Concerning the details and convergence properties of Algorithm 1 the
reader is referred to Dellnitz and Hohmann (1997).
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2.2. computation of fixed points

For a given dynamical system f the invariant set within Q in general con-
sists not only of fixed points but contains also periodic points or even
more complicated sets. Thus, the above algorithm cannot be used directly
to compute the set of fixed points FPf (Q). We therefore present a modified
version of the subdivision scheme. The main difference is in the selection
step, which is now adapted to the purpose of finding FPf (Q).

ALGORITHM 2. Computation of FPf (Q).

Step 0. Initialization. Let B0 be an initial collection of finitely many sub-
sets of the compact set Q such that ∪B∈B0B =Q.

Step k. Iteration (k = 1,2, . . . ). At the beginning of Step k a collection
Bk−1 of finitely many subsets is available.

k.1. Choose θk with 0<θmin � θk � θmax <1.

k.2. Subdivision: Construct a new (refined) system ̂Bk of subsets such
that

⋃

B∈ ̂Bk

B =
⋃

B∈Bk−1

B

and

diam(̂Bk)= θk diam(Bk−1).

k.3. Set Bk =∅ to be an empty collection.

k.4. Selection:
For every B ∈ ̂Bk do:

add B to the collection Bk if f (B)∩B �=∅.
end for

k.5. Continue with Step k +1.

As a first result we show that this algorithm converges to the set FPf (Q)

for k →∞.

PROPOSITION 1. Let Qk be the union of the subsets in Bk,

Qk =
⋃

B∈Bk

B.
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Then the following holds:

(a) Qk is a covering of FPf (Q) for every k �0.

(b) Q∞ =
∞
⋂

k=0
Qk =FPf (Q).

Proof.

(a) Let x ∈ FPf (Q). By definition we have x ∈ Q = Q0. Now assume that
x ∈Qk−1 for some k >0. Then by construction there exists a B(x)∈ ̂Bk

with x ∈B(x). Since f (x)=x it follows that f (B(x))∩B(x) is nonemp-
ty. Therefore B(x)∈Bk which implies x ∈Qk.

(b) Let x ∈ Q∞. Then for every k � 0 there exists a Bk(x) ∈ Bk with
x ∈Bk(x). Assume that x /∈ FPf (Q), i.e. ε = ||f (x) − x|| > 0. Since f is
continuous there exists a δ >0 such that

||f (x ′)−f (x)||<ε/3

for all x ′ ∈R
n with ||x ′ − x||<δ. Using the fact that diam(Bk)→ 0 for

k →∞ we conclude that there exists a K >0 such that

diam(Bk(x))<min(δ, ε/3)

for all k>K. But this implies that diam(f (Bk(x)))<2ε/3 for all k>K.
On the other hand by construction f (B)∩B �=∅ for all B ∈Bk and all
k >0. Thus we have a contradiction to ||f (x)−x||= ε and therefore x

must be in FPf (Q). Since x ∈Q∞ was arbitrary we conclude that Q∞ ⊂
FPf (Q). In combination with (a) it immediately follows that Q∞ =
FPf (Q).

Remark 2. The statements of Proposition 1 still hold if we replace
f (B) in the selection step of the subdivision procedure by some outer
approximation Uk(f (B)) of f (B) as long as

max
B∈ ̂Bk

dist(Uk(f (B)), f (B))→0

for k →∞.

2.3. implementation of the algorithm

The numerical realization of Algorithm 2 is very similar to the classical
subdivision algorithm for the approximation of arbitrary invariant sets of
dynamical systems as described in Dellnitz and Hohmann (1997). For the
sake of completeness we briefly review its important aspects.
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For the implementation of the collections Bk we use generalized rectangles
(also called boxes) of the form

R(c, r)={y ∈R
n : |yi − ci |� ri for i =1, . . . , n},

where c, r ∈R
n, ri >0 for i =1, . . . , n, are the center and radius, respectively.

We start the subdivision procedure with a single rectangle B0 ={R}. Given
a collection Bk we construct the refined collection ̂Bk by bisection of the
rectangles in Bk with respect to the j th coordinate, where j is varied
cyclically. The subdivision of a rectangle R(c, r) leads to two rectangles
R−(c−, r̂) and R+(c+, r̂), where

r̂i =
{

ri for i �= j,

ri/2 for i = j,
c±
i =

{

ci for i �= j,

ci ± ri/2 for i = j.

This allows for a very efficient storage scheme: a collection Bk is completely
determined by the initial box R(c, r) and a binary tree representing the
subdivision structure (see Figure 1).

The selection step is usually discretized via test points within each box.
The discretized selection criterion thus reads as follows:

add B to the collection Bk if f (x)∈B for at least on test point x ∈B.

For low-dimensional problems we typically use a fixed grid of test points
within each box, in higher-dimensional problems the points are chosen at
random.

Remark 3.

(a) Rigorous convergence results for the realization of the subdivision
scheme can be obtained when outer approximations of f (B) can be
computed which satisfy the condition of Remark 2. This can be done
for example using appropriate interval extensions of f (see e.g. Moore,
1966; Alefeld and Herzberger, 1983). If local Lipschitz estimates on f

Root
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Figure 1. Storage scheme for the box collections Bk, k =0,1,2,3.
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are available then the methods presented in Junge (1999) can be used,
too.

(b) Results on the complexity of general subdivision schemes can be found
in Schütze (2004).

We now illustrate the method by the following elementary example.

EXAMPLE 4. We want to compute the fixed points of the Hénon map
(Hénon, 1976)

f : R
2 →R

2, f (x)=
(

1−ax2
1 +bx2

x1

)

with a standard set of parameter values a = 1.2 and b = 0.2. It is known
that for these values the Hénon map exhibits complicated dynamics. How-
ever, this does not affect our fixed point computations.

Using Algorithm 2 with a grid of 4 ×4 test points per box in the selec-
tion step we get the coverings shown in Figure 2. After 40 subdivision steps
the covering consists of 5 boxes within two clusters (see Table 1).
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Figure 2. Box coverings B10, B14 and B18 of the fixed points of the Hénon map.
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Table 1. Boxes obtained after 40 steps of Algorithm 2 applied to the Hénon
map

Center Radius

x1 x2 x1 x2

−1.30516148 −1.30516148 2.86102295×10−6 2.86102295×10−6

−1.30515575 −1.30516148 2.86102295×10−6 2.86102295×10−6

−1.30515575 −1.30515575 2.86102295×10−6 2.86102295×10−6

0.63849163 0.63849163 2.86102295×10−6 2.86102295×10−6

0.63849163 0.63849735 2.86102295×10−6 2.86102295×10−6

Since the number of clusters stays constant after the first few subdivision
steps we conclude that there are two fixed points within the rectangles

[−1.3051645,−1.3051528]× [−1.3051645,−1.3051528]

and

[0.6384887,0.6384945]× [0.6384887,0.6385003],

respectively. The exact results can either be found by additional subdivision
steps until a prescribed accuracy is achieved or by switching to some local
search method which uses the obtained covering as input.

In addition to the above values a = 1.2 and b = 0.2 we also performed
computational tests on a wide range of different values for these parame-
ters. Algorithm 2 was always able to approximate the corresponding fixed
points.

3. Application to Optimization Problems

In this section we show how to use the methods presented in the previous
section to solve unconstrained optimization problems.

3.1. computation of extremal points

The main idea is to view iteration schemes for local optimization (e.g.
Newton’s method or conjugate gradient methods) as discrete dynamical
systems and to compute their fixed points using the subdivision procedure
of Section 2. Since these fixed points correspond to the (local) extremal
solutions of the objective function under consideration this method allows
for the computation of coverings of all the minima (or maxima) within a
given compact subset of the phase space.
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EXAMPLE 5. We want to compute the extremal points of the following
objective function (Himmelblau, 1972):

g(x1, x2)= (x2
1 +x2 −11)2 + (x1 +x2

2 −7)2

Within the compact set Q = [−5,5] × [−5,5] this function possesses 9
critical points as listed in Table 2. Using our subdivision algorithm with
Newton’s method as the dynamical system and a grid of 3 × 3 test points
per box we obtain the covering shown in Figure 3. It consists of 9 boxes
with each of them containing one of the critical points of g.

Having computed such a box covering one can obtain the exact solutions
of the optimization problem using standard iterative optimization algo-
rithms with a small number of initial points within each of the boxes.

Table 2. Location and types of the
critical points of g within the region
Q= [−5,5]× [−5,5]

x1 x2 Type

−3.7793 −3.2832 minimum
−2.8051 3.1313 minimum

3.0000 2.0000 minimum
3.5844 −1.8481 minimum

−3.0730 −0.0814 saddle point
−0.1280 −1.9537 saddle point

0.0867 2.8843 saddle point
3.3852 0.0739 saddle point

−0.2708 −0.9230 maximum
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Figure 3. Box covering of all the critical points of the function g of Example 5 obtained after
14 subdivision steps.
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3.2. combination with branch and bound techniques

Using the method described above we are in principle able to approximate
all the local extremal solutions of the given optimization problem. Selection
of the global minima (or maxima) can then be done by comparing the cor-
responding function values.

However, if one is only interested in the global minima our method can
be combined with well known branch and bound techniques (see e.g. Horst
and Pardalos, 1995; Horst and Tuy, 1996; Pardalos and Romeijn, 2002)
yielding an even more efficient approach. We therefore introduce the fol-
lowing modified subdivision scheme for the computation of coverings of
the set of global minimizers of a given continuous function g : R

n →R.

ALGORITHM 3. Computation of global minimizers.

Step 0. Initialization. Choose an iteration scheme f : R
n →R

n such that
the local minimizers of g are fixed points of f .
Set α0 =+∞ and let B0 be an initial collection of finitely many subsets of
a compact set Q such that ∪B∈B0B =Q.

Step k. Iteration (k = 1,2, . . . ). At the beginning of Step k a collection
Bk−1 and an upper bound αk−1 on the global minimum of g is available.

k.1. Choose θk with 0<θmin � θk � θmax <1.
k.2. Subdivision: Construct a new (refined) system ̂Bk of subsets such
that

⋃

B∈ ̂Bk

B =
⋃

B∈Bk−1

B

and

diam(̂Bk)= θk diam(Bk−1).

k.3. Set αk = min(αk−1,min g(Sk)), where Sk is a finite set of sample
points within the union of the boxes in ̂Bk.

k.4. Set Bk =∅ to be an empty collection.
k.5. Selection:
For every B ∈ ̂Bk do

Determine a lower bound βk(B)� inf g(B).
Add B to the collection Bk if f (B)∩B �=∅ and βk(B)�αk.

end for
k.6. Continue with Step k +1.

From Proposition 1 we know that in the limit the resulting set Q∞ =
⋂∞

k=0 Qk with Qk =∪B∈Bk
B contains only fixed points of f . We now show

under which conditions Algorithm 3 converges to the set



GLOBAL OPTIMIZATION USING A DYNAMICAL SYSTEMS 579

GMg(Q)={x� ∈Q :g(x�)�g(x)∀x ∈Q}
of all global minimizers of g with respect to the set Q.

THEOREM 6. The set Q∞ = ⋂∞
k=0 Qk with Qk = ∪B∈Bk

B generated by
Algorithm 3 is equal to the set GMg(Q) = {x� ∈ Q : g(x�) � g(x) ∀x ∈ Q} of
global minimizers of g with respect to Q if the following conditions on the
bounds αk and βk(B) are satisfied:

(i) (αk −min g(Q))→0 for k →∞.
(ii) max

B∈Bk

(inf g(B)−βk(B))→0 for k →∞.

Proof. We first show that no global minimizer is removed in the selection
step of the algorithm: Let x ∈ Q be a global minimizer of g with respect
to Q. Assume that x ∈ Qk−1 = ⋃

B∈Bk−1
B for some k > 0. By construction

there exists a B(x)∈ ̂Bk with x ∈B(x). Since x is a fixed point of f we have
f (B(x))∩B(x) �=∅. Furthermore αk �g(x) since x is a global minimizer and
g(x)�βk(B(x)) by construction. It follows that B(x)∈Bk and therefore x ∈
Qk. Since x ∈Q=Q0 we conclude that x ∈Qk for all k�0 and hence x ∈Q∞.

Since Q∞ is a subset of FPf (Q) by Proposition 1 it remains to show
that each x ∈ FPf (Q) which is not a global minimizer of g is not con-
tained in Q∞: Let x ∈FPf (Q) with ε = (

g(x)−min g(Q)
)

>0. For contra-
diction assume that x ∈ Q∞. This implies that for every k � 0 there exists
a Bk(x) ∈ Bk with x ∈ Bk(x). Since g is continuous and diam(Bk) → 0 for
k →∞ there exists a k1 with

(g(x)− inf g(Bk(x)))<ε/3

for all k >k1. The condition on βk implies that there is a k2 with

(inf g(Bk(x))−βk(Bk(x)))<ε/3

for all k >k2. Furthermore there exist a k3 such that

(αk −min g(Q))<ε/3

for all k >k3 due to the convergence property of αk. It follows that for all
k >K =max(k1, k2, k3)

αk −βk(Bk(x))=αk −min g(Q)+min g(Q)−g(x)

+g(x)− inf g(Bk(x))+ inf g(Bk(x))−βk(Bk(x))

<ε/3− ε + ε/3+ ε/3=0.

Therefore αk < βk(Bk(x)) for all k > K which contradicts the fact that
Bk(x)∈Bk for all k �0.
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Remark 7.

(a) Observe that Algorithm 3 can be viewed as a particular realization of
the general branch and bound algorithm by Horst and Tuy (1996). In
fact, the additional selection criterion f (B)∩B �=∅ turns out to be very
useful for the purpose of global optimization.

(b) Using the definitions of Horst and Tuy a bounding operation which
satisfies conditions (i) and (ii) of Theorem 6 is called consistent.

In numerical realizations of Algorithm 3 the following two questions
arise:

(i) How to choose the sets Sk of sample points to satisfy the condition on
the αk?

(ii) How to determine suitable lower bounds βk(B)?

One possible answer to the first question is given by the following result:

PROPOSITION 8. Let the sets of sample points Sk for the computation of αk

in Algorithm 3 be defined in such a way that Sk ∩B �= ∅ for all k > 0 and for
all B ∈Bk. Furthermore assume that condition (ii) of Theorem 6 is satisfied.
Then the coverings Bk converge to the set of global minimizers of g, i.e.

dist(Qk,GMg(Q))→0, for k →∞.

Proof. We have to show that αk → min g(Q) for k → ∞. Let x� ∈ Q be
a global minimizer of g, i.e. g(x�) = min g(Q), and choose an arbitrary
ε > 0. For each k > 0 there exists a Bk(x

�) ∈ Bk with x� ∈ Bk(x
�). Since

diam(Bk)→0 for k → ∞ and by continuity of g we conclude that there
exists a k̄ >0 such that g(y)−g(x�)<ε for all y ∈Bk(x

�) and all k > k̄. By
assumption we can choose yk ∈Sk with yk ∈Bk(x

�) for all k > 0. It follows
that g(yk) − g(x�) < ε for all k > k̄. By definition of αk we therefore have
αk −g(x�)<ε for all k > k̄.

In applications we usually discretize the selection criterion f (B)∩B �= ∅
of Algorithm 3 by mapping test points from the box B. We therefore just
have to compute the values of the objective function for these points to sat-
isfy the above condition. In practice we additionally compute the objective
values for the image points f (x) of those test points for which f (x) ∈ B

for x ∈B. The reason is that in general these values are lower than those
for the test points themselves. This leads to sequences {αk}k which converge
faster to the global minimum and therefore boxes with ‘big’ lower bounds
are eliminated earlier in the subdivision process.
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Obviously the computation of lower bounds βk(B) on the function val-
ues of g within a given box B is in general a very difficult task. If the
objective function is simple enough methods of interval arithmetic can be
used. Otherwise estimates on lower bounds have to be computed based
on numerical approximations of the given function and/or other available
information on its local behavior.

4. Numerical Examples

We now illustrate the efficiency of our approach by several numerical
examples.

EXAMPLE 9. As a first example we apply our global optimization algo-
rithm to the function

g(x1, x2)= (x2
1 +x2 −11)2 + (x1 +x2

2 −7)2,

which has previously been considered in Example 5. The four local mini-
mizers of g (cf. Table 2) have the same function value 0 and therefore all of
them are also global minimizers. As shown in Tables 3 and 4 and Figure 4
our branch and bound procedure locates all these points efficiently in a
reliable way. In this simple case interval arithmetic has been used for the
computation of the lower bounds. Table 4 also shows how the combina-
tion with branch and bound techniques decreases the computational effort
compared to Algorithm 2.

EXAMPLE 10. Our second example is taken from Moré et al. (1981):

g2 : R
3 →R, g2(x)=

10
∑

i=1

hi(x)2,

Table 3. Number of boxes obtained
during an application of the subdivi-
sion process to the objective function g

of Example 9

Subdivision steps Number of boxes

2 4
4 9
6 5
8 5

10 5
12 4
14 4
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Table 4. Performance of the subdivi-
sion procedure for Example 9

Method Function evaluations
g ∇g ∇2g

Algorithm 2 9 1644 1644
Algorithm 3 332 212 212
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Figure 4. Box covering of the global minimizers of Example 9 obtained after 14 subdivision
steps.

where

hi(x)= exp(−0.1ix1)− exp(−0.1ix2)−x3(exp(−0.1i)+ exp(−i)).

The points (1,10,1)t and (10,1,−1)t are global minimizers. The line
x1 =x2, x3 =0 consists of global minimizers, too.

Using Newton’s method with randomly chosen initial points the two
global minima at (1,10,1)t and (10,1,−1)t can easily be found. On the
other hand such a direct approach makes it difficult to detect that the
line x1 = x2, x3 = 0 completely consists of global minimizers as well (see
Figure 5(a)). In contrast to this we are able to compute coverings of all
the global minimizers within a given box B ∈ R

3 using Algorithm 3 (cf.
Figure 5(b)). As shown in Table 5 a comparable computational effort is
required to obtain this result. Observe that for this example Algorithm 2
shows a similar behavior since g2 has only a few local minimizers besides
the global ones. In that case the number of boxes during the course of the
algorithm increases and therefore also slightly the number of test points
for which the iteration scheme has to be evaluated. On the other hand no
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randomly chosen initial points

Box covering after 30 steps
of Algorithm 3

Figure 5. Global minimizers found for Example 10 (projection onto the (x1, x2)- plane).

Table 5. Comparison of the subdivision techniques with other optimization methods for
the function g2

Method Function evaluations CPU Global minimizers found
g2 ∇g2 ∇2g2 time (1,10,1)t (10,1,−1)t x1 =x2

Algorithm 2 3873 7.1×105 7.1×105 23 s yes yes all1

Algorithm 3 6.6×105 9.8×105 3.6×105 20 s yes yes all1

Newton 125 6.7×104 6.6×104 2 s yes yes 121
1424 6.7×105 6.6×105 19 s yes yes 1420
3488 1.7×106 1.7×106 55 s yes yes 3486

1 The line x1 =x2, x3 =0 is completely contained in the covering.

lower bounds have to be computed, which in this example, were obtained
from numerical estimates based on evaluations of g2 and ∇g2.

EXAMPLE 11. The next example shows that the subdivision algorithm
also reliably finds the global minimizers of objective functions with a larger
number of variables. For this we introduce the following function

g3 : R
n →R, g3(x)=

n
∑

i=1

1+x2
i (xi −0.2)2(xi +0.2)2 − cos(10π xi),

which has 3n global minimizers in [−2,2]n.

Using the Algorithm 3 we always find all the global minimizers of g3. For
n=5 we also used Algorithm 2 to compute a covering of all the local extremal
points of g3 and selected the global minimizers afterwards. As shown in Table 6
much more function evaluations are needed compared to the branch and bound
variant of the subdivision method. This is due to the fact thatg3 possesses a large
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number of local minimizers in addition to the global ones. The ability to delete
boxes containing only local minimizers based on lower bounds therefore leads
to a significant improvement of the performance in this case.

For n = 5 it is also possible to find all global minimizers running the
quasi-Newton method implemented in the NAG C-library (www.nag.com)
with randomly chosen initial points. However, the number of function and
gradient evaluations is much higher than for Algorithm 3 (cf. Table 6). For
n= 10 it seems to be impossible to compute all the minimizers using this
method – even for a very large number of initial points – while the subdi-
vision algorithm finds all of them successfully.

In addition to the above examples we carried out computational exper-
iments with several test problems from the literature. The following list
specifies these functions, their global minimizers and the search space we
used in our computations:

(i) Levy test problem no. 13 (Levy and Gomez, 1985):

g(x)= sin2
(3π x1)+

n−1
∑

i=1

(xi −1)2(1+ sin2
(3πxi+1))

+(xn −1)2(1+ sin2
(2πxn)), −5�xi �5, i =1, . . . , n,

x∗ = (1,1, . . . ,1)t , g(x∗)=0.

(ii) The Griewank test function (Griewank, 1981):

g(x)=
n

∑

i=1

x2
i

4000
−

n
∏

i=1

cos
(

xi√
i

)

+1, −500�xi �700,

i =1, . . . , n, x∗ = (0,0, . . . ,0)t , g(x∗)=0.

Table 6. Comparison of the results for the subdivision algorithms and
an optimization method implemented in the NAG C-library applied to
the function g3

n Method Function evaluations CPU Minimizers
g3 ∇g3 time found

5 Algorithm 2 3.6×1011 1.2×1011 4960 m 243

Algorithm 3 1.0×107 4.3×106 9 s 243

NAG 7.6×105 7.6×105 2 s 38
3.8×106 3.8×106 9 s 125
3.8×107 3.8×107 98 s 243

10 Algorithm 3 1.6×1010 6.7×109 460 m 59049

NAG 7.0×108 7.0×108 46 m 31
7.0×109 7.0×109 462 m 328
3.5×1010 3.5×1010 2329 m 1468
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(iii) A modified version of the Griewank function presented in Locatelli
(2003):

g(x)=
n

∑

i=1

x2
i

4000
−

n
∑

i=1

log
[

2+ cos
(

xi√
i

)]

+n log(3),

−200�xi �400, i =1, . . . , n, x∗ = (0,0, . . . ,0)t , g(x∗)=0.

For all this test problems our new global optimization algorithm reliably
detects the global minimizers in a reasonable amount of time (cf. Table 7).
Observe that in some cases the NAG iterative solver with randomly chosen
initial points allows to find the global minimizer much faster. But in prac-
tice one never knows when to stop the search since – in contrast to these
experiments – one usually does not know if the best solution found so far
actually is the global minimizer. For example in case of the modified Gri-
ewank function with n > 5 after a few hours of computation the smallest
function value encountered so far did not change anymore although – even
after more than a week – the global minimizer still had not been found.

We finish this section with some notes about complexity issues of the
proposed algorithm.

Remark 12. Our experiments indicate that the performance of Algo-
rithm 3 is partially affected by the following properties of the optimization
problem or rather their combination:

– the number of local and global minimizers of the objective function,
– the problem dimension,
– the quality of the lower bounds.

Table 7. Comparison of Algorithm 3 and the NAG
solver for several test examples from the literature

Function n CPU time

Algorithm 3 NAG

Levy 10 2 s 24 ms
20 10 s 140 ms
25 105 s 235 ms
50 875 s 3.5 s

Griewank 10 35 ms 4 ms
20 54 ms 4 ms
50 243 ms 5 ms

Modified Griewank 5 1 s 1240 m
10 16 s failed
15 26 m failed
20 2673 m failed
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Let us discuss the first two points in more detail. Boxes containing only
local minimizers will only be deleted due to their lower bounds. In the
early stage of the subdivision process they often will be kept and require
additional computational work not needed to detect the global minimiz-
ers. In case of a huge number of local minimizers this dominates the
beginning of the computation and therefore leads to a slower performance
compared to a function with only a view local minimizers. The number
of global optimizers determine the minimal number of boxes needed in
the final covering. Hence from some point on in the subdivision process
the amount of work per subdivision step depends only on the number of
global optimizers.

The dimension of the problem influences mainly the early stage of the
subdivision process since more subdivision steps are needed until all coor-
dinate directions are subdivided. The smaller the boxes are in each coor-
dinate direction the more likely it seems to be that they can be deleted if
they do not contain parts of the solution set. On the other hand this also
crucially depends on the overall behavior of the objective function.

5. Conclusion

In this paper we have presented a new global optimization method which
combines recently developed set oriented multilevel subdivision techniques
for the analysis of dynamical systems with branch and bound techniques.
We have analyzed the convergence properties of the algorithm and dis-
cussed possible implementations. Numerical examples show that our new
method reliably finds the global minima of arbitrary nonlinear functions.
Due to its set oriented approach an application of this method is partic-
ularly advantageous if the problem possesses a large number of extremal
points.
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